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Recently we took interest in chiral propargylic alcohols de- 
rived from (1-R)-(+)-camphor. We were amazed to find no 
less than 16 citations in the literature from 1929 to 1994, but 
a total confusion as to purity, melting points, and assignments 
of stereostructures for the camphor (l)/acetylene addition 
products 2 and 3.Therefore, we decided to clarify the situati- 
on. 

We find that adducts of 1 with alkali metal acetylide are 
rather difficult to purify. A major (m.p. 55 "C, positive rota- 
tion) and a minor stereoisomer (m.p. 121"C, negative rotati- 
on sence) are formed under most sets of conditions. They 
can be isolated by repeated careful column chromatography. 
Analysis by gas chromatography indicates, however, that in 
most cases small quantities of 1 (m.p. 179-181°C; [a]D25 
+44.1") are present in supposedly "pure" chromatographed 
and recrystallized samples of 2 and 3. Another complication 
arises from the fact that (major compound) 2 can react a se- 

cond time under the condition of its formation giving rise to 
4 (m.p. 209-210 "C) as a further impurity. Even small con- 
centrations of 1 and 4 have a profound influence on melting 
points. Table 1 presents the results from the literature along 
with our data ( for configurational assignments, see below). 

Reactions at room temperature and below in solvents such 
as THF and ether give mostly 2. We can confirm that the 
addition of acetylene to 1 is reversible in the presence of pow- 
dered KOH in N-methylpyrrolidone and that 3 is formed in 
relatively higher concentration on prolonged interaction of 
1 and acetylene/KOH in that solvent (cf. [ 111). It is difficult, 
however, to control this specific reaction and to get reprodu- 
cible results even if conditions are seemingly constant: The 
transformation of 2 back into 1 and then into 3 competes with 
the formation of 4. 

The C,H-COSY spectrum permitted the assignment of all 
'H and 13C signals of 2, but a total interpretation of the spec- 

Table 1 Literature data on compounds 2 and 3, compared to the present work 

m.p. aD Value isomer Yea lit. 
"C ["CI assigned 

205 - +22.5" (50% in EtOH) ? 1929 [I1 
85 ? 1934 P I  
97-98 ? 1937 [31 
56-60 ? 1936 [41 
54-56 ? 1944 151 

68-69 20 +16.35" (EtOH) ? 1958 [71 

55 - +19.3" ? 1959 [91 
87 - -14.22" ? 1959 [91 

63 ? 1955 [61 

55 20 +17.7" (c=20, EtOH) ? 1959 [81 

50 25 +15.31" (4% in EtOH) 2 1965 [lo] 
86 - +15.3" (c=7.2, EtOH) 2 1968 [111 
122 25 -26.20" (EtOH) 3 1968 [111 
63.5-64.5 2 198 1 [I21 

52-54 ? 1982 [14] 
61-62 3 1988 [15] 
57.5-59.5 3 1994 [16] 
55 21 +15.37" (c=20, EtOH) 2 this work 
121 20 -18.89" (c=0.7, EtOH) 3 this work 

207.5-209 2 1981 ~ 3 1  
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tra of 3 was not possible due to overlapping multiplets. Even 
though differential anisotropic influences of OH and acety- 
lene groups on the neighboring proton and carbon signals 
are apparent, these data do not allow safe assignments of re- 
lative configurations of 2 and 3. In the recent literature [15, 
161, exo attack of the acetylide (to give 3 as major product) 
was assumed. The older publications by Cadiot et al. [lo, 
111 reverse assignments. These authors refer to the stereo- 
chemically established endo addition of the methyl Grignard 
reagent to camphor [18]. The latter result has been the basis 
of many subsequent structural assignments in camphor addi- 
tion chemistry. 

Lanthanide-induced shift experiments with E ~ ( f o d ) ~  were 
thought to clarify the situation [ 191. When the 'H NMR spec- 
trum of the lower melting, major adduct was measured in the 
presence of three different concentrations Eu(fodh, strong 
downfield shifts were observed for (C-1)-methyl and endo- 
(C-7)-methyl, (C-3)Hexo (very strong shift), (C-3)Hendo, (C- 
6)Hendo, and (C-4)-H. The other, higher melting isomer exhi- 
bited strong shifts for (C-1)-methyl and endo-(C-7)-methyl, 
(C-3)He,,, (C-3)Hendo, and (C-6)Hend,, the latter two being 

5 zyc 
very strong. These effects can be explained best if one assu- 
mes association of the europium complex not only at the hy- 
droxyl but also partially at the acetylene. The very strong 
influences on (C-3)Hendo, and (C-6)Hend, in the m.p. 121 " c  
compound are in line with the assigment of endo-OH (= 3), 
as is the strongest shift of (C-3)Hexo with the exo-OH confi- 
guration (= 2) in the m.p. 55 "C isomer.These absolute ste- 
reostructures fit also into the concept of preferred attack of 
the reagent from the bottom side. 

Table 2 gives 13C NMR results from the literature along 
with our data. We now identify the compound with a m.p. 
above 200 "C as 4 .  Although this had been stated already in 
1955 [6], a wrong structural appointment as 2 was published 
as late as 1981 [13]. 

Once the stereochemistry of 2 is granted, the configurati- 
on of the further products prepared in the present work from 
2 and benzophenone, pivalophenone, and 2,4-dimethylpen- 
tandione (4-8) must be analogous. Best yields in the adduct 
formations were obtained if 2 was transformed into its THP 
ether prior to its conversion with butyl lithium and the keto- 
nes. A second center of chirality is present in 7. Neverthe- 

Table 2 13C Data of compounds 2,3, and 4 as assigned by various authors 

This work: Garratt et al. This work: This work: Johnson et a1.[15], 
4 [13]: 2 (wrong) 3 2 Djuardi et a1.[16]: 3 

87.6( C=) 
78.0(C-2) 
- 
53.7(C-1) 
48.5(C-3) 
47.9(C-7) 
45.4(C-4) 
32.6(C-6) 
27.0(C-5) 
21.4(Me) 
21.O(Me) 
10.4(Me) 

87.6(C=CH) 

77.9(HC=C) 
77.9(C-2) 

53.7(C-1) 
48.5(C-3) 
47.9(C-7) 
45.4(C-4) 
32.6(C-5) 
27.0(C-6) 
2 1.4(Me) 
2 1 .O(Me) 
10.4(Me) 

89.3 (C=CH) 

73.6(HC=C) 
76.0(C-2) 

54.1(C-1) 
49.6(C-7) 
47.2(C-3) 
45.3(C-4) 
27.9(C-6/C-5) 
27.2(C-5/C-6) 
21 .O(Me) 
20.8(Me) 
11.9(Me) 

88.1(C=CH) 

71.5(HC=C) 
77.9(C-2) 

53.4(C-1) 
48.1(C-3) 
47.9(C-7) 
45.4(C-4) 
32.4(C-6) 
26.9(C-5) 
21.3(Me) 
21 .O(Me) 
10.1 (Me) 

88.1 
77.8 
71.5 
53.4 
48.1 
47.9 
45.3 
32.3 
26.8 
21.3 
21.0 
10.3 
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less, the recrystallized compound was obtained as a single 
diastereomer, exhibiting only one tert-butyl group in the 'H 
NMR and the expected 19 signals in the 13C NMR spectrum. 

Partial support by Fonds der Chemischen Industrie is ack- 
now ledged . 

Experimental 

Gas chromatography: 3m OV17 column at 100 "C, carrier 
gas NZ, 1 bar, Carlo Erba Fractovap 4200 instrument. Ren- 
tention times for 2: 10.8; for 3: 12.0 min. 
'H NMR spectra: Bruker AC 250-P (250 MHz) or AM 300 
(300 MHz); 13C NMR spectra: Bruker AC 250-P (62.9 MHz). 

2-endo-Ethinyl-I, 7,7-trimethylbicyclo[2.2. Ilheptan-2-exo-01 
(2) was prepared from 1 according to lit. methods: a) via ethi- 
nyl magnesium chloride in THF [ 151, b) via lithium acetylide 
in THF [16], or c) via sodium acetylide in liquid ammonia 
[9]. The crude material was purified as stated in the refe- 
rences via the silver salt, then chromatographed (silicagel, 
petroleum ether (b.p. 60 "C)/ether 4 : 1, and recrystallized. 
m.p. 55 "C. - 'H NMR: 6 2.45 (s, 1 H, ethinyl-H), 2.22 (ddd, 
1 H, J = 3.4,4.1,13.5 Hz, (C-3)Hexo), 1.97(~, lH, OH), 1.95- 
1.85 (m, 1 H, (C-6)Hendo), 1.90-1.86 (m, 1 H, (C-3) Hendo), 
1.76 (dd 1 H, J = 4.1, 4.5 Hz, (C-4)H), 1.72-1.63 (m, 1 H, 
(C-5)Hexo), 1.53-1.37 (m, 1 H, (C-6)Hexo), 1.24-1.08 (m, 1 

(C-1)-CH3), 0.88 (s, 3 H, endo-(C-7)-CH3). 
H, (C-5)Hendo), 1.06 ( S ,  3 H, exo-(C-7)-CH3), 0.96 ( s ,  3 H, 

2-exo- Ethinyl-I, 7,7-trimethylbicyclo[2.2. I]heptan-2-endo-ol 
(3) and 1,2 -Di(2 -exo-hydroxy-2 -endo- bomy1)ethyne (4) (cf . 
[ill): 

60 g (0.39 mol) of 1 were dissolved in 150 ml of freshly di- 
stilled N-methylpyrrolidone and a stream of acetylene gas 
was passed through for 2 h. 97 g (1.73 mol) of powdered 
KOH were added slowly within 30 min. in such a way that 
the temp. never exceeded 20 "C. The mixture was stirred for 
90 h at room temperature. Within that period, more acetylene 
was introduced (twice for 1 h each time). In the end the reac- 
tion mixture was poured onto ice, and the precipitate was 
filtered and washed with saturated aqueous NH4C1. The brow- 
nish solid was taken up in ether and dried (Na2S04). The rela- 
tive proportions of 2,3, and 4 varied strongly among parallel 
experiments. Typically 13-24% of 3 and up to 40% of 4 were 
obtained along with unreacted 1 and much 2. 
Repeated recrystallization of the crude product from petrole- 
um ether furnished 4, m.p. 209-210 "C, [ a ] ~ ' ~  = + 24.7" 

(c= 3.01, EtOH). - 'H NMR (250 MHz): 6 6.23 (m, 2 H, (C- 
3 and C-3')Hex0), 2.03 (broad s, 2 H, OH), 1.89-1.63 (m, 8 
H), 1.53-1.41 (m, 2 H, (C-6 and C-6')Hexo), 1.19-1.09 (m, 2 

CH3), 0.94 (s, 6 H, (C-1 and C-l')-CH3), 0.87 (s, 6 H, endo- 
(C-7 and C-7')-CH3). 
The mother liquids of 4 were worked up by column chroma- 
tography (silica gel, petroleum ether (b.p. 60 "C)/ether 4: 1). 
After2,3 was eluted. m.p. 121 "C , [0lID3O = -18.89" (c= 0.7, 
EtOH). - 'H NMR (250 MHz): 6 2.59 (s, 1 H, ethinyl-H), 
2.52-2.43 (m, 1 H, (C-3)Hex0), 2.16-2.05 (m, 1 H, (C-6)H), 
1.95 (s, 1 H, OH), 1.81-1.69 (m, 2H,  (C-4)H, (C-5)H), 1.49 
(d, 1 H; J=13.6 Hz, (C-3)Hendo), 1.43-1.29(m, 1 H, (C-6)H), 
1.28-1.26 (m, 1 H, (C-5)H), 1.10 (s, 3 H, (C-7)-CH,), 0.99 

H, (C-5 and C-5')&,,d0), 1.06 ( s ,  6 H, exo-(C-7 and C-7')- 

(s, 3 H, (C-l)-CH3), 0.90 (s, 3 H,(C-7 CH3). 

1,4-Di(2-exo-hydroxy-endo-2-bornyl)butadiyne (5): 

3 g (16.85 mmol) 2 in 80 ml of ethanol were dropped slowly 
into a solution of 6.8 g of NH4Cl and 4.3 g of CuzC12 in 50 ml 
of water. The mixture was warmed to 50 "C. Air was bubb- 
led through at this temperature for 21 h (distributed over 3 d; 
in the nights the reaction was stirred at room temp., and three 
times 50 ml of ethanol each were added). In the end the mix- 
ture was cooled and extracted 4 times with 30 ml portions of 
ether. The aqueous phase was evaporated to dryness, and the 
residue was extracted repeatedly with boiling ether. The com- 
bined etheral extracts were dried (Na2S04) and concentra- 
ted. The forming solid was recrystallized from petroleum ether 
to give 1.4 g (47%) of colorless 5, m.p. 239-240 "C (lit. m.p. 
242 "C [6]). - [a]D30 = + 32.4"(~= 1, EtOH). - 'H NMR (250 
MHz): 6 2.26-2.18 (m, 2 H, (C-3 and C-3')Hexo), 2.05 (s, 2 
H, OH), 1.91-1.65 (m, 8 H), 1.55-1.43 (m, 2 H, (C-6 and C- 
6)Hexo), 1.20-1.10 (m, 2 H, (C-5 and C-5')Hend,,) 1.05 (s, 6 
H, exo-(C-7 and C-7')-CH3), 0.96 (s, 6 H, (C-1 and C-1')- 
CH3), 0.87 (s, 6 H, endo-(C-7 and C-7')-CH3). - I3C NMR: 6 
83.4 (ethinyl-C), 78.6 (C-2, C-2'), 68.1 (ethinyl-C), 54.1 (C- 

32.4 (C-6, C-6'),26.9 (C-5, C-5'), 21.3 (endo(C-7 and C-7')- 
C), 20.9 (exo-(C-7 and C-7')-C), 10.3 ((C-1 and C-l')-C). 

1, C-l'), 48.09 (C-3,C-3'), 48.07 (C-7, C-7'), 45.3 (C-4, C-4'), 

Transformation of 2 into 6-8 ( general procedure): 

a) Formation of the 2 THP ether: 17.8 g (100 mmol) of 2 
were treated with 9.24 g (110 mmol) of 3,4-dihydro-2H-py- 
rane and 0.5 ml of conc. aqueous HC1 under cooling and 
stirring. After 12 h at room temp., 1 g solid KOH was added, 
and the mixture was filtered 15 min. later. The liquid was 
distilled in a kugelrohr at 80-120 "(315 Torr and used as 
such. 
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b) Li acetylide formation and carbonyl addition: 3.9 g (15 
mmol) of the THP ether was dissolved in 30 ml of dry THF, 
cooled to -70 "C, and 10 ml of a 1.6 M butyl lithium solution 
in pentane (16 mmol) was dropped in. After 15 min. of stir- 
ring at -70 "C, 15 mmol of the ketone in 10 ml of dry THF 
was added slowly. After continued stirring over night at room 
temperature, 25 ml of a saturated aqueous NH4Cl solution 
was added. Usual workup was followed by cleavage of the 
THP ether: The residue was taken up in 30 ml of methanol 
and treated with 200 mg of p-toluene sulfonic acid (2h at 50 
"C, 12 h at room temperature). Methanol was removed in 
vacuo, the residue was worked up with ether, and washed 
with aqueous Na2C03. The aqueous phases were re-extrac- 
ted with ether, the combined organic extracts were dried 
(Na2S04) and concentrated. The crude products were puri- 
fied by chromatography on silicagel with petroleum ether (b.p. 
60 "C)/ether 1 : 1. 

2-endo-(3-Hydroxy-3,3-diphenylprop-l -inyl)l, 7,7-trime- 
thylbicyclo/2.2.1 Jheptan-2-exo-01 (6) 

m.p. 87-88 "C, [a]D24 = +23.5" (c= 2, EtOH). - 'H NMR 
(250 MHz): 6 7.61-7.56 (m, 4 H, Haom,), 7.35-7.21 (m, 6 
H, Hxom,), 2.80 (s, 1 H, OH), 2.27 (ddd, 1 H; J = 3.4, 4.1, 
13.5 Hz, (C-3)Hex0), 2.04 (s, 1 H, OH), 1.96-1.11 (m, 6 H), 
1.07 (s, 3 H, exo-(C-7)-CH3), 0.97 (s, 3 H, (C-l)-CH3), 0.88 
(s, 3 H, endo-(C-7)-CH3). - 13C NMR: 6 145.1,144.7,128.33, 
128.26, 127.6, 126.0, 125.92, 125.90 (Cmom), 91.6, 90.1 
(ethinyl-C), 86.3,74.5 (C -2, C-OH), 53.8 (C-l), 48.3 (C-3), 
48.0 (C-7), 45.4 (C-4), 32.5 (C-6), 27.0 (C-5), 21.3 (endo- 
(C-7)-C), 21.0 (exo-(C-7) C), 10.5 ((C-1)-C). -Anal. calcd. 
for C25H2802 (360.5): C 83.29 H 7.83; found C 83.01 H 7.50. 

2-endo-(3-Hydroxy-4,4-dirnethyl-3-phenylpent-l -inyl)l, 7,7- 
trimethylbicyclo[2.2.l]heptan-2-exo-o1 (7) 

NMR (250 MHz): 6 7.60-7.56 (m, 2 H, Haom,), 7.33-7.27 
(m, 3 H, Haom,), 2.33 (s, 1 H, OH), 2.25 (ddd, 1 H; J = 3.5, 
4.0, 13.4 Hz (C-3) Hex,), 2.03 (s, 1 H, OH), 1.95-1.88 (m, 2 
H, (C-3)Hendo, (C-6)Hex0), 1.80-1.43 (m, 4 H, (C-4)H, (C- 

1.00 (s, 9 H, tertbutyl), 0.97 (s, 3 H, (C-l)-CH3), 0.89 (s, 3 
H, endo-(C-7)-CH3). - I3C NMR: 6 142.3, 128.5, 126.5 (Ca- 
rom.), 90.0, 86.7 (ethinyl-C), 78.9, 78.2 (C-2, C-OH), 53.7 

terr.butyl), 32.6 (C-6), 27.0 (C-5), 25.3 (Me of tert.butyl), 
21.4 (endo-(C-7)-C), 20.9 (exo-(C-7)-C), 10.5 ((C-1)-C). 
Anal. calcd. for C23H3202 (340.5): C 81.13 H 9.47; found C 
81.08 H9.60. 

m.p. 95-98 "c, [ a ] ~ ~  = +15.18" (C= 2.02, EtOH). - 'H 

5)Hendo, (C-5)Hexo, (C-6)Hendo>, 1.07 ( S ,  3 H, exo-(C-7)-CH3) 

(C-l), 48.5 (C-3), 48.0 (C-7), 45.4 (C-4), 39.7 (quart. C of 

2-endo-(3-Hydroxy-3-isopropyl-4-methylpent-I-inyl)l, 7,7- 
trimethylbicyclo[2.2.l]heptan-2-exo-ol (8) 
m.p. 89 "C, [ I X ] D ~ ~  = +10.61"(~= 1, EtOH). - 'H NMR (250 
MHz): 6 2.23 (ddd, 1 H; J = 3.4, 4.1, 13.4 Hz, (C-3)Hex0), 
2.00-1.90 (m, 2 H, (c-3)Hendo, (c-6)Hendo), 1.86 (S, 1 H, OH), 
1.81 (s, 1 H, OH), 1.78-1.63 (m, 4 H, (C-4)H, (C-5)HeX0, H 
of i-Pr), 1.53-1.41 (m, 1 H, (C-6)bxO), 1.28-1.11 (m, 1 H, 

(c-5)Hendo), 1.06 (s, 3 H, exo-(C7)-CH3), 1.03 (d, 3 H; J = 
6.8 Hz, Me of i-Pr), 1.01 (d, 3 H; J = 6.8 Hz, Me of i-Pr), 
1.00 (s, 3 H, (C-l)-CH& 0.97 (d, 3 H; J = 7.3 Hz, Me of i- 
Pr), 0.94 (d, 3 H; J = 7.3 Hz, Me of i-Pr), 0.87 (s, 3 H, endo- 
(C-7)-CH3). - 13C NMR: 6 89.6,84.7 (ethinyl-C), 78.0,77.5 

34.49, 34.46 (tert. C of i-Pr), 32.6 (C-6), 27.0 (C-5), 21.4 
(endo-(C-7)-C), 21.0 (exo-(C-7)-C), 16.41, 16.37 (Me of i - 
Pr), 10.4 ((C-1)-C). 
Anal. calcd. for C19H32O2 (292.5): C 78.03 H 11.03; found 
C 77.48 H 11.17. 

((2-2, C-OH), 53.6 (C-l), 48.6 (C-3), 47.9 (C-7), 45.4 (C-4), 
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